Radar tracking is a problem in nonlinear estimation. Usually, detections provide noisy measurements on a target's position in radar coordinates (range and angle), while its position and motion are determined in Euclidean space (rectangular coordinates), and a Kalman filter is used. In which case, the track is biased and has an inconsistent covariance matrix. Of course, over the years many techniques have been proposed for "debiasing" such tracks. Here it is shown that they generally do not make…
Radar tracking is a problem in nonlinear estimation. Usually, detections provide noisy measurements on a target's position in radar coordinates (range and angle), while its position and motion are determined in Euclidean space (rectangular coordinates), and a Kalman filter is used. In which case, the track is biased and has an inconsistent covariance matrix. Of course, over the years many techniques have been proposed for "debiasing" such tracks. Here it is shown that they generally do not make the tracks more accurate and in some cases their estimates are worse. Fortunately, a simple method exists whereby an extended Kalman filter can be unbiased, less noisy and have a consistent covariance matrix. In an earlier work by this author, it was shown that the angle should be used first, the range last. Others have since shown its efficacy in a variety of radar tracking applications. In this monograph it is further extended: the measurements can now be used in any order with virtually the same results; the extended Kalman filter is made stable thereby. We also discuss several of the more commonly used tracking methods, with simple examples used throughout so the reader can gain a deeper understanding of this radar tracking metric accuracy problem.
Radar tracking is a problem in nonlinear estimation. Usually, detections provide noisy measurements on a target's position in radar coordinates (range and angle), while its position and motion are determined in Euclidean space (rectangular coordinates), and a Kalman filter is used. In which case, the track is biased and has an inconsistent covariance matrix. Of course, over the years many techniques have been proposed for "debiasing" such tracks. Here it is shown that they generally do not make the tracks more accurate and in some cases their estimates are worse. Fortunately, a simple method exists whereby an extended Kalman filter can be unbiased, less noisy and have a consistent covariance matrix. In an earlier work by this author, it was shown that the angle should be used first, the range last. Others have since shown its efficacy in a variety of radar tracking applications. In this monograph it is further extended: the measurements can now be used in any order with virtually the same results; the extended Kalman filter is made stable thereby. We also discuss several of the more commonly used tracking methods, with simple examples used throughout so the reader can gain a deeper understanding of this radar tracking metric accuracy problem.
Atsiliepimai
Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
Kainos garantija
Ženkliuku „Kainos garantija” pažymėtoms prekėms Knygos.lt garantuoja geriausią kainą. Jei identiška prekė kitoje internetinėje parduotuvėje kainuoja mažiau - kompensuojame kainų skirtumą. Kainos lyginamos su knygos.lt nurodytų parduotuvių sąrašu prekių kainomis. Knygos.lt įsipareigoja kompensuoti kainų skirtumą pirkėjui, kuris kreipėsi „Kainos garantijos” taisyklėse nurodytomis sąlygomis. Sužinoti daugiau
Elektroninė knyga
22,39 €
DĖMESIO!
Ši knyga pateikiama ACSM formatu. Jis nėra tinkamas įprastoms skaityklėms, kurios palaiko EPUB ar MOBI formato el. knygas.
Svarbu! Nėra galimybės siųstis el. knygų jungiantis iš Jungtinės Karalystės.
Tai knyga, kurią parduoda privatus žmogus. Kai apmokėsite užsakymą, jį per 7 d. išsiųs knygos pardavėjas . Jei to pardavėjas nepadarys laiku, pinigai jums bus grąžinti automatiškai.
Šios knygos būklė nėra įvertinta knygos.lt ekspertų, todėl visa atsakomybė už nurodytą knygos kokybę priklauso pardavėjui.
Atsiliepimai