264,60 €
311,29 €
-15% su kodu: ENG15
Principal Component Analysis
Principal Component Analysis
264,60 €
311,29 €
  • Išsiųsime per 10–14 d.d.
This book is aimed at raising awareness of researchers, scientists and engineers on the benefits of Principal Component Analysis (PCA) in data analysis. In this book, the reader will find the applications of PCA in fields such as energy, multi-sensor data fusion, materials science, gas chromatographic analysis, ecology, video and image processing, agriculture, color coating, climate and automatic target recognition.
264.60 2025-07-13 23:59:00
  • Leidėjas:
  • ISBN-10: 953510182X
  • ISBN-13: 9789535101826
  • Formatas: 17 x 24.4 x 1.4 cm, kieti viršeliai
  • Kalba: Anglų
  • Extra -15 % nuolaida šiai knygai su kodu: ENG15

Principal Component Analysis + nemokamas atvežimas! | knygos.lt

Atsiliepimai

Aprašymas

This book is aimed at raising awareness of researchers, scientists and engineers on the benefits of Principal Component Analysis (PCA) in data analysis. In this book, the reader will find the applications of PCA in fields such as energy, multi-sensor data fusion, materials science, gas chromatographic analysis, ecology, video and image processing, agriculture, color coating, climate and automatic target recognition.

EXTRA 15 % nuolaida su kodu: ENG15

264,60 €
311,29 €
Išsiųsime per 10–14 d.d.

Akcija baigiasi už 5d.10:06:49

Nuolaidos kodas galioja perkant nuo 10 €. Nuolaidos nesumuojamos.

Prisijunkite ir už šią prekę
gausite 3,11 Knygų Eurų!?
Įsigykite dovanų kuponą
Daugiau

This book is aimed at raising awareness of researchers, scientists and engineers on the benefits of Principal Component Analysis (PCA) in data analysis. In this book, the reader will find the applications of PCA in fields such as energy, multi-sensor data fusion, materials science, gas chromatographic analysis, ecology, video and image processing, agriculture, color coating, climate and automatic target recognition.

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%