110,39 €
Analysis III
Analysis III
  • Išparduota
Analysis III
Analysis III
El. knyga:
110,39 €
Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integrati…
0

Analysis III | Roger Godement | knygos.lt

Atsiliepimai

Aprašymas

Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques.

Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular functions and its modern version using the structure of the Lie algebra of SL(2,R).

110,39 €
Prisijunkite ir už šią prekę
gausite
1,10 Knygų Eurų! ?

Elektroninė knyga:
Atsiuntimas po užsakymo akimirksniu! Skirta skaitymui tik kompiuteryje, planšetėje ar kitame elektroniniame įrenginyje.

Mažiausia kaina per 30 dienų: 110,39 €

Mažiausia kaina užfiksuota: Kaina nesikeitė


Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques.

Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular functions and its modern version using the structure of the Lie algebra of SL(2,R).

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
[{"option":"58","probability":13,"style":{"backgroundColor":"#f3f3f3"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/685e599c86b351751013788.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"57","probability":14,"style":{"backgroundColor":"#e31e30"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/685e5981e89e41751013761.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"56","probability":15,"style":{"backgroundColor":"#f3f3f3"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/685e59691dc2d1751013737.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"55","probability":14,"style":{"backgroundColor":"#e31e30"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/685e590bade881751013643.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"54","probability":15,"style":{"backgroundColor":"#f3f3f3"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/685e58f20a7761751013618.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"53","probability":14,"style":{"backgroundColor":"#e31e30"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/685e58d20c1ee1751013586.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"52","probability":14.5,"style":{"backgroundColor":"#f3f3f3"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/685e58b358b2e1751013555.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"51","probability":0.5,"style":{"backgroundColor":"#e31e30"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/685e57cded6da1751013325.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}}]