Su kodu ENG15 kaina tik 152,31 €
179,19 €
Statistical Rethinking
Statistical Rethinking
152,31 €
179,19 €
  • Išsiųsime per 10–14 d.d.
Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds your knowledge of and confidence in making inferences from data. Reflecting the need for scripting in today's model-based statistics, the book pushes you to perform step-by-step calculations that are usually automated. This unique computational approach ensures that you understand enough of the details to make reasonable choices and interpretations in your own modeling work.The text presents causal inference and genera…
152.31 2025-06-22 23:59:00
  • Extra -15 % nuolaida šiai knygai su kodu: ENG15

Statistical Rethinking + nemokamas atvežimas! | knygos.lt

Atsiliepimai

(4.71 Goodreads įvertinimas)

Aprašymas

Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds your knowledge of and confidence in making inferences from data. Reflecting the need for scripting in today's model-based statistics, the book pushes you to perform step-by-step calculations that are usually automated. This unique computational approach ensures that you understand enough of the details to make reasonable choices and interpretations in your own modeling work.



The text presents causal inference and generalized linear multilevel models from a simple Bayesian perspective that builds on information theory and maximum entropy. The core material ranges from the basics of regression to advanced multilevel models. It also presents measurement error, missing data, and Gaussian process models for spatial and phylogenetic confounding.



The second edition emphasizes the directed acyclic graph (DAG) approach to causal inference, integrating DAGs into many examples. The new edition also contains new material on the design of prior distributions, splines, ordered categorical predictors, social relations models, cross-validation, importance sampling, instrumental variables, and Hamiltonian Monte Carlo. It ends with an entirely new chapter that goes beyond generalized linear modeling, showing how domain-specific scientific models can be built into statistical analyses.



Features



Integrates working code into the main text



Illustrates concepts through worked data analysis examples



Emphasizes understanding assumptions and how assumptions are reflected in code



Offers more detailed explanations of the mathematics in optional sections



Presents examples of using the dagitty R package to analyze causal graphs



Provides the rethinking R package on the author's website and on GitHub

EXTRA 15 % nuolaida

152,31 €
179,19 €
Išsiųsime per 10–14 d.d.

Kupono kodas: ENG15

Akcija baigiasi už 06:42:12

Nuolaidos kodas galioja perkant nuo 10 €. Nuolaidos nesumuojamos.

Prisijunkite ir už šią prekę
gausite 1,79 Knygų Eurų!?
Įsigykite dovanų kuponą
Daugiau

Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds your knowledge of and confidence in making inferences from data. Reflecting the need for scripting in today's model-based statistics, the book pushes you to perform step-by-step calculations that are usually automated. This unique computational approach ensures that you understand enough of the details to make reasonable choices and interpretations in your own modeling work.



The text presents causal inference and generalized linear multilevel models from a simple Bayesian perspective that builds on information theory and maximum entropy. The core material ranges from the basics of regression to advanced multilevel models. It also presents measurement error, missing data, and Gaussian process models for spatial and phylogenetic confounding.



The second edition emphasizes the directed acyclic graph (DAG) approach to causal inference, integrating DAGs into many examples. The new edition also contains new material on the design of prior distributions, splines, ordered categorical predictors, social relations models, cross-validation, importance sampling, instrumental variables, and Hamiltonian Monte Carlo. It ends with an entirely new chapter that goes beyond generalized linear modeling, showing how domain-specific scientific models can be built into statistical analyses.



Features



Integrates working code into the main text



Illustrates concepts through worked data analysis examples



Emphasizes understanding assumptions and how assumptions are reflected in code



Offers more detailed explanations of the mathematics in optional sections



Presents examples of using the dagitty R package to analyze causal graphs



Provides the rethinking R package on the author's website and on GitHub

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%