90,60 €
106,59 €
-15% su kodu: ENG15
Robust Regression Methods for Insurance Risk Classification
Robust Regression Methods for Insurance Risk Classification
90,60 €
106,59 €
  • Išsiųsime per 10–14 d.d.
Risk classification is an important actuarial process for Insurance companies. It allows for the underwriting of the best risks, through an appropriate choice of classification variables, and helps set fair premiums in rate-making. Currently, insurance companies mainly use ad-hoc methods for risk classification, more often based on the type of expenses covered than on the distribution of the corresponding losses. The selection of classification variables is also, in general, based on rate-makin…
90.60 2025-09-07 23:59:00
  • Extra -15 % nuolaida šiai knygai su kodu: ENG15

Robust Regression Methods for Insurance Risk Classification (el. knyga) (skaityta knyga) | knygos.lt

Atsiliepimai

Aprašymas

Risk classification is an important actuarial process for Insurance companies. It allows for the underwriting of the best risks, through an appropriate choice of classification variables, and helps set fair premiums in rate-making. Currently, insurance companies mainly use ad-hoc methods for risk classification, more often based on the type of expenses covered than on the distribution of the corresponding losses. The selection of classification variables is also, in general, based on rate-making variables rather than on an optimal choice criteria based on statistical methods. It is known that logistic regression is among the many sophisticated statistical methods used by the banking industry in order to select credit rating variables. Extending the method to insurance risks seems only natural. Insurance risks are not usually classified in only two categories, good and bad, as can be the case in credit rating, but in a larger number of classes. Here we consider the generalization of the model to extend the use of logistic regression to insurance risk classification.

EXTRA 15 % nuolaida su kodu: ENG15

90,60 €
106,59 €
Išsiųsime per 10–14 d.d.

Akcija baigiasi už 2d.14:21:51

Nuolaidos kodas galioja perkant nuo 10 €. Nuolaidos nesumuojamos.

Prisijunkite ir už šią prekę
gausite 1,07 Knygų Eurų!?
Įsigykite dovanų kuponą
Daugiau

Risk classification is an important actuarial process for Insurance companies. It allows for the underwriting of the best risks, through an appropriate choice of classification variables, and helps set fair premiums in rate-making. Currently, insurance companies mainly use ad-hoc methods for risk classification, more often based on the type of expenses covered than on the distribution of the corresponding losses. The selection of classification variables is also, in general, based on rate-making variables rather than on an optimal choice criteria based on statistical methods. It is known that logistic regression is among the many sophisticated statistical methods used by the banking industry in order to select credit rating variables. Extending the method to insurance risks seems only natural. Insurance risks are not usually classified in only two categories, good and bad, as can be the case in credit rating, but in a larger number of classes. Here we consider the generalization of the model to extend the use of logistic regression to insurance risk classification.

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
(rodomas nebus)
× promo banner