173,31 €
203,89 €
-15% su kodu: ENG15
Quantum Non-linear Sigma-Models
Quantum Non-linear Sigma-Models
173,31
203,89 €
  • Išsiųsime per 10–14 d.d.
This is the first comprehensive presentation of the quantum non-linear sigma-models. The original papers consider in detail geometrical properties and renormalization of a generic non-linear sigma-model, illustrated by explicit multi-loop calculations in perturbation theory.
  • Extra -15 % nuolaida šiai knygai su kodu: ENG15

Quantum Non-linear Sigma-Models (el. knyga) (skaityta knyga) | knygos.lt

Atsiliepimai

(3.83 Goodreads įvertinimas)

Aprašymas

This is the first comprehensive presentation of the quantum non-linear sigma-models. The original papers consider in detail geometrical properties and renormalization of a generic non-linear sigma-model, illustrated by explicit multi-loop calculations in perturbation theory.

EXTRA 15 % nuolaida su kodu: ENG15

173,31
203,89 €
Išsiųsime per 10–14 d.d.

Akcija baigiasi už 4d.05:05:44

Nuolaidos kodas galioja perkant nuo 5 €. Nuolaidos nesumuojamos.

Prisijunkite ir už šią prekę
gausite 2,04 Knygų Eurų!?
Įsigykite dovanų kuponą
Daugiau

This is the first comprehensive presentation of the quantum non-linear sigma-models. The original papers consider in detail geometrical properties and renormalization of a generic non-linear sigma-model, illustrated by explicit multi-loop calculations in perturbation theory.

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
(rodomas nebus)
[{"option":"182","probability":1,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/699586bcf3d791771407036.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"181","probability":1.3,"style":{"backgroundColor":"#d9202e"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/699586a9ea31e1771407017.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"180","probability":1.6,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/699586932869f1771406995.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"179","probability":1.5,"style":{"backgroundColor":"#d91f2e"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/6995867c492391771406972.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"178","probability":1.5,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/6995864bc94f41771406923.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"177","probability":1.6,"style":{"backgroundColor":"#d91e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/699585fd332f01771406845.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"176","probability":1.4,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/699585e4473f01771406820.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"175","probability":0.1,"style":{"backgroundColor":"#d91e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/699585c540d291771406789.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}}]