Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library.Transformers have been used to write realistic news stories, improve Google Search queries, and even create c…
Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library.
Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf, among the creators of Hugging Face Transformers, use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve.
Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how transformers can be used for cross-lingual transfer learning Apply transformers in real-world scenarios where labeled data is scarce Make transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments
Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library.
Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf, among the creators of Hugging Face Transformers, use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve.
Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how transformers can be used for cross-lingual transfer learning Apply transformers in real-world scenarios where labeled data is scarce Make transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments
Atsiliepimai
Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
Kainos garantija
Ženkliuku „Kainos garantija” pažymėtoms prekėms Knygos.lt garantuoja geriausią kainą. Jei identiška prekė kitoje internetinėje parduotuvėje kainuoja mažiau - kompensuojame kainų skirtumą. Kainos lyginamos su knygos.lt nurodytų parduotuvių sąrašu prekių kainomis. Knygos.lt įsipareigoja kompensuoti kainų skirtumą pirkėjui, kuris kreipėsi „Kainos garantijos” taisyklėse nurodytomis sąlygomis. Sužinoti daugiau
Elektroninė knyga
22,39 €
DĖMESIO!
Ši knyga pateikiama ACSM formatu. Jis nėra tinkamas įprastoms skaityklėms, kurios palaiko EPUB ar MOBI formato el. knygas.
Svarbu! Nėra galimybės siųstis el. knygų jungiantis iš Jungtinės Karalystės.
Tai knyga, kurią parduoda privatus žmogus. Kai apmokėsite užsakymą, jį per 7 d. išsiųs knygos pardavėjas . Jei to pardavėjas nepadarys laiku, pinigai jums bus grąžinti automatiškai.
Šios knygos būklė nėra įvertinta knygos.lt ekspertų, todėl visa atsakomybė už nurodytą knygos kokybę priklauso pardavėjui.
Atsiliepimai