Retrieval-Augmented Generation (RAG) represents the cutting edge of AI innovation, bridging the gap between large language models (LLMs) and real-world knowledge. This book provides the definitive roadmap for building, optimizing, and deploying enterprise-grade RAG systems that deliver measurable business value.
This comprehensive guide takes you beyond basic concepts to advanced implementation strategies, covering everything from architectural patterns to production deployment. You'll explore…
Retrieval-Augmented Generation (RAG) represents the cutting edge of AI innovation, bridging the gap between large language models (LLMs) and real-world knowledge. This book provides the definitive roadmap for building, optimizing, and deploying enterprise-grade RAG systems that deliver measurable business value.
This comprehensive guide takes you beyond basic concepts to advanced implementation strategies, covering everything from architectural patterns to production deployment. You'll explore proven techniques for document processing, vector optimization, retrieval enhancement, and system scaling, supported by real-world case studies from leading organizations.
Key Learning Objectives
Design and implement production-ready RAG architectures for diverse enterprise use cases
Master advanced retrieval strategies including graph-based approaches and agentic systems
Optimize performance through sophisticated chunking, embedding, and vector database techniques
Navigate the integration of RAG with modern LLMs and generative AI frameworks
Implement robust evaluation frameworks and quality assurance processes
Deploy scalable solutions with proper security, privacy, and governance controls
Real-World Applications
Intelligent document analysis and knowledge extraction
Code generation and technical documentation systems
Customer support automation and decision support tools
Regulatory compliance and risk management solutions
Whether you're an AI engineer scaling existing systems or a technical leader planning next-generation capabilities, this book provides the expertise needed to succeed in the rapidly evolving landscape of enterprise AI.
<What You Will Learn
Architecture Mastery: Design scalable RAG systems from prototype to enterprise production
Advanced Retrieval: Implement sophisticated strategies, including graph-based and multi-modal approaches
Performance Optimization: Fine-tune embedding models, vector databases, and retrieval algorithms for maximum efficiency
LLM Integration: Seamlessly combine RAG with state-of-the-art language models and generative AI frameworks
Production Excellence: Deploy robust systems with monitoring, evaluation, and continuous improvement processes
Industry Applications: Apply RAG solutions across diverse enterprise sectors and use cases
Retrieval-Augmented Generation (RAG) represents the cutting edge of AI innovation, bridging the gap between large language models (LLMs) and real-world knowledge. This book provides the definitive roadmap for building, optimizing, and deploying enterprise-grade RAG systems that deliver measurable business value.
This comprehensive guide takes you beyond basic concepts to advanced implementation strategies, covering everything from architectural patterns to production deployment. You'll explore proven techniques for document processing, vector optimization, retrieval enhancement, and system scaling, supported by real-world case studies from leading organizations.
Key Learning Objectives
Design and implement production-ready RAG architectures for diverse enterprise use cases
Master advanced retrieval strategies including graph-based approaches and agentic systems
Optimize performance through sophisticated chunking, embedding, and vector database techniques
Navigate the integration of RAG with modern LLMs and generative AI frameworks
Implement robust evaluation frameworks and quality assurance processes
Deploy scalable solutions with proper security, privacy, and governance controls
Real-World Applications
Intelligent document analysis and knowledge extraction
Code generation and technical documentation systems
Customer support automation and decision support tools
Regulatory compliance and risk management solutions
Whether you're an AI engineer scaling existing systems or a technical leader planning next-generation capabilities, this book provides the expertise needed to succeed in the rapidly evolving landscape of enterprise AI.
<What You Will Learn
Architecture Mastery: Design scalable RAG systems from prototype to enterprise production
Advanced Retrieval: Implement sophisticated strategies, including graph-based and multi-modal approaches
Performance Optimization: Fine-tune embedding models, vector databases, and retrieval algorithms for maximum efficiency
LLM Integration: Seamlessly combine RAG with state-of-the-art language models and generative AI frameworks
Production Excellence: Deploy robust systems with monitoring, evaluation, and continuous improvement processes
Industry Applications: Apply RAG solutions across diverse enterprise sectors and use cases
Atsiliepimai
Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
Kainos garantija
Ženkliuku „Kainos garantija” pažymėtoms prekėms Knygos.lt garantuoja geriausią kainą. Jei identiška prekė kitoje internetinėje parduotuvėje kainuoja mažiau - kompensuojame kainų skirtumą. Kainos lyginamos su knygos.lt nurodytų parduotuvių sąrašu prekių kainomis. Knygos.lt įsipareigoja kompensuoti kainų skirtumą pirkėjui, kuris kreipėsi „Kainos garantijos” taisyklėse nurodytomis sąlygomis. Sužinoti daugiau
Elektroninė knyga
22,39 €
DĖMESIO!
Ši knyga pateikiama ACSM formatu. Jis nėra tinkamas įprastoms skaityklėms, kurios palaiko EPUB ar MOBI formato el. knygas.
Svarbu! Nėra galimybės siųstis el. knygų jungiantis iš Jungtinės Karalystės.
Tai knyga, kurią parduoda privatus žmogus. Kai apmokėsite užsakymą, jį per 7 d. išsiųs knygos pardavėjas . Jei to pardavėjas nepadarys laiku, pinigai jums bus grąžinti automatiškai.
Šios knygos būklė nėra įvertinta knygos.lt ekspertų, todėl visa atsakomybė už nurodytą knygos kokybę priklauso pardavėjui.
Perskaityta knyga:
Nenauja knyga, kuri parduodama tiesiai iš knygos.lt sandėlio. Knygos kokybė įvertinta knygos.lt ekspertų.
Tai knyga, kurią parduoda privatus žmogus. Kai apmokėsite užsakymą, jį per 7 d. išsiųs knygos pardavėjas . Jei to pardavėjas nepadarys laiku, pinigai jums bus grąžinti automatiškai.
Šios knygos būklė nėra įvertinta knygos.lt ekspertų, todėl visa atsakomybė už nurodytą knygos kokybę priklauso pardavėjui.
Atsiliepimai