70,63 €
83,09 €
-15% su kodu: ENG15
Galois Groups and Fundamental Groups on Riemann Surfaces
Galois Groups and Fundamental Groups on Riemann Surfaces
70,63
83,09 €
  • Išsiųsime per 12–18 d.d.
Bachelor Thesis from the year 2018 in the subject Mathematics - Algebra, grade: 1,0, Free University of Berlin (Mathematik), language: English, abstract: This thesis deals with the correlation of the fundamental group and the Galois group, using their corresponding entities of covering spaces and field extensions. First it is viewed in the general setting of categories, using the language of Galois categories. It is shown that the categories of the finite étale algebras and the category of cov…
  • Leidėjas:
  • Metai: 2018
  • Puslapiai: 48
  • ISBN-10: 3668818975
  • ISBN-13: 9783668818972
  • Formatas: 14.8 x 21 x 0.3 cm, minkšti viršeliai
  • Kalba: Anglų
  • Extra -15 % nuolaida šiai knygai su kodu: ENG15

Galois Groups and Fundamental Groups on Riemann Surfaces (el. knyga) (skaityta knyga) | knygos.lt

Atsiliepimai

Aprašymas

Bachelor Thesis from the year 2018 in the subject Mathematics - Algebra, grade: 1,0, Free University of Berlin (Mathematik), language: English, abstract: This thesis deals with the correlation of the fundamental group and the Galois group, using their corresponding entities of covering spaces and field extensions. First it is viewed in the general setting of categories, using the language of Galois categories. It is shown that the categories of the finite étale algebras and the category of covering spaces are correlated, which gives the fact that the profinite completion of the fundamental group and the absolute Galois group are similar. More specifically, on Riemann surfaces it is shown that there exists an anti-equivalence of categories between the finite field extensions of the meromorphic functions of a compact, connected Riemann Surface X and the category of branched coverings of X. A more explicit theorem, that provides an isomorphism between a specific Galois Group and the profinite Completion of the Fundamental Group of a pointed X, gives more insight on the behaviour of these two groups.

EXTRA 15 % nuolaida su kodu: ENG15

70,63
83,09 €
Išsiųsime per 12–18 d.d.

Akcija baigiasi už 3d.17:07:35

Nuolaidos kodas galioja perkant nuo 5 €. Nuolaidos nesumuojamos.

Prisijunkite ir už šią prekę
gausite 0,83 Knygų Eurų!?
Įsigykite dovanų kuponą
Daugiau
  • Autorius: Matthias Himmelmann
  • Leidėjas:
  • Metai: 2018
  • Puslapiai: 48
  • ISBN-10: 3668818975
  • ISBN-13: 9783668818972
  • Formatas: 14.8 x 21 x 0.3 cm, minkšti viršeliai
  • Kalba: Anglų

Bachelor Thesis from the year 2018 in the subject Mathematics - Algebra, grade: 1,0, Free University of Berlin (Mathematik), language: English, abstract: This thesis deals with the correlation of the fundamental group and the Galois group, using their corresponding entities of covering spaces and field extensions. First it is viewed in the general setting of categories, using the language of Galois categories. It is shown that the categories of the finite étale algebras and the category of covering spaces are correlated, which gives the fact that the profinite completion of the fundamental group and the absolute Galois group are similar. More specifically, on Riemann surfaces it is shown that there exists an anti-equivalence of categories between the finite field extensions of the meromorphic functions of a compact, connected Riemann Surface X and the category of branched coverings of X. A more explicit theorem, that provides an isomorphism between a specific Galois Group and the profinite Completion of the Fundamental Group of a pointed X, gives more insight on the behaviour of these two groups.

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
(rodomas nebus)
[{"option":"182","probability":1,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/699586bcf3d791771407036.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"181","probability":1.3,"style":{"backgroundColor":"#d9202e"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/699586a9ea31e1771407017.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"180","probability":1.6,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/699586932869f1771406995.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"179","probability":1.5,"style":{"backgroundColor":"#d91f2e"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/6995867c492391771406972.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"178","probability":1.5,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/6995864bc94f41771406923.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"177","probability":1.6,"style":{"backgroundColor":"#d91e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/699585fd332f01771406845.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"176","probability":1.4,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/699585e4473f01771406820.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"175","probability":0.1,"style":{"backgroundColor":"#d91e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/699585c540d291771406789.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}}]