481,86 €
566,89 €
-15% su kodu: ENG15
Cantorian Set Theory and Limitation of Size
Cantorian Set Theory and Limitation of Size
481,86 €
566,89 €
  • Išsiųsime per 10–14 d.d.
Cantor's ideas formed the basis for set theory and also for the mathematical treatment of the concept of infinity. The philosophical and heuristic framework he developed had a lasting effect on modern mathematics, and is the recurrent theme of this volume. Hallett explores Cantor's ideas and, in particular, their ramifications for Zermelo-Frankel set theory.
481.86 2025-09-14 23:59:00
  • Autorius: Michael Hallett
  • Leidėjas:
  • ISBN-10: 0198532830
  • ISBN-13: 9780198532835
  • Formatas: 15.8 x 23.3 x 2 cm, minkšti viršeliai
  • Kalba: Anglų
  • Extra -15 % nuolaida šiai knygai su kodu: ENG15

Cantorian Set Theory and Limitation of Size (el. knyga) (skaityta knyga) | knygos.lt

Atsiliepimai

(3.33 Goodreads įvertinimas)

Aprašymas

Cantor's ideas formed the basis for set theory and also for the mathematical treatment of the concept of infinity. The philosophical and heuristic framework he developed had a lasting effect on modern mathematics, and is the recurrent theme of this volume. Hallett explores Cantor's ideas and, in particular, their ramifications for Zermelo-Frankel set theory.

EXTRA 15 % nuolaida su kodu: ENG15

481,86 €
566,89 €
Išsiųsime per 10–14 d.d.

Akcija baigiasi už 1d.01:53:36

Nuolaidos kodas galioja perkant nuo 10 €. Nuolaidos nesumuojamos.

Prisijunkite ir už šią prekę
gausite 5,67 Knygų Eurų!?
Įsigykite dovanų kuponą
Daugiau

Cantor's ideas formed the basis for set theory and also for the mathematical treatment of the concept of infinity. The philosophical and heuristic framework he developed had a lasting effect on modern mathematics, and is the recurrent theme of this volume. Hallett explores Cantor's ideas and, in particular, their ramifications for Zermelo-Frankel set theory.

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
(rodomas nebus)
[{"option":"93","probability":1,"style":{"backgroundColor":"#da1e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/68c116ea05a901757484778.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"92","probability":20,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/68c02c908e7b91757424784.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"91","probability":14,"style":{"backgroundColor":"#da1e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/68c02c796a6721757424761.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"90","probability":16,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/68c02c643d12e1757424740.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"89","probability":15,"style":{"backgroundColor":"#dd1e2e"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/68c02c4cbd2651757424716.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"88","probability":15,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/68c02bd3ad9ff1757424595.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"87","probability":17,"style":{"backgroundColor":"#de1e2e"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/68c02b8a530ca1757424522.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"86","probability":2,"style":{"backgroundColor":"#f3f3f3"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/68c02b71066401757424497.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}}]