42,66 €
50,19 €
-15% su kodu: ENG15
An Elementary Treatise on the integral Calculus
An Elementary Treatise on the integral Calculus
42,66
50,19 €
  • Išsiųsime per 12–18 d.d.
Elementary Forms of integration, Integration of rational fractions, Integration by successive reduction, Integration by rationalization, Miscellaneous examples of integration, Definite integrals, Areas of plane curves, Lengths of curves, Volumes and surfaces of solids, Integrals of inertia, Multiple integrals, On mean value and probability,
  • Extra -15 % nuolaida šiai knygai su kodu: ENG15

An Elementary Treatise on the integral Calculus (el. knyga) (skaityta knyga) | knygos.lt

Atsiliepimai

Aprašymas

Elementary Forms of integration, Integration of rational fractions, Integration by successive reduction, Integration by rationalization, Miscellaneous examples of integration, Definite integrals, Areas of plane curves, Lengths of curves, Volumes and surfaces of solids, Integrals of inertia, Multiple integrals, On mean value and probability,

EXTRA 15 % nuolaida su kodu: ENG15

42,66
50,19 €
Išsiųsime per 12–18 d.d.

Akcija baigiasi už 4d.18:53:16

Nuolaidos kodas galioja perkant nuo 10 €. Nuolaidos nesumuojamos.

Prisijunkite ir už šią prekę
gausite 0,50 Knygų Eurų!?
Įsigykite dovanų kuponą
Daugiau

Elementary Forms of integration, Integration of rational fractions, Integration by successive reduction, Integration by rationalization, Miscellaneous examples of integration, Definite integrals, Areas of plane curves, Lengths of curves, Volumes and surfaces of solids, Integrals of inertia, Multiple integrals, On mean value and probability,

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
(rodomas nebus)
[{"option":"129","probability":13,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/691b2307abdb21763386119.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"128","probability":13,"style":{"backgroundColor":"#da1e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/691b22d47f6341763386068.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"127","probability":15,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/691b22b698d6b1763386038.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"126","probability":14,"style":{"backgroundColor":"#da1e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/691b229c542901763386012.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"125","probability":15,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/691b225d36dcf1763385949.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"124","probability":15,"style":{"backgroundColor":"#da1e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/691b2215aaee11763385877.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"123","probability":14,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/691b21f0003da1763385840.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"122","probability":1,"style":{"backgroundColor":"#da1e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/691b203dd14a31763385405.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}}]