Starting with the end of the seventeenth century, one of the most interesting directions in mathematics (attracting the attention as J. Bernoulli, Euler, Jacobi, Legendre, Abel, among others) has been the study of integrals of the form r dz l Aw(T) = -, TO W where w is an algebraic function of z. Such integrals are now called abelian. Let us examine the simplest instance of an abelian integral, one where w is defined by the polynomial equation (1) where the polynomial on the right hand side has…
Starting with the end of the seventeenth century, one of the most interesting directions in mathematics (attracting the attention as J. Bernoulli, Euler, Jacobi, Legendre, Abel, among others) has been the study of integrals of the form r dz l Aw(T) = -, TO W where w is an algebraic function of z. Such integrals are now called abelian. Let us examine the simplest instance of an abelian integral, one where w is defined by the polynomial equation (1) where the polynomial on the right hand side has no multiple roots. In this case the function Aw is called an elliptic integral. The value of Aw is determined up to mv + nv, where v and v are complex numbers, and m and n are 1 2 1 2 integers. The set of linear combinations mv+ nv forms a lattice H C C, and 1 2 so to each elliptic integral Aw we can associate the torus C/ H. 2 On the other hand, equation (1) defines a curve in the affine plane C = 2 2 {(z, w)}. Let us complete C2 to the projective plane lP' = lP' (C) by the addition of the "line at infinity," and let us also complete the curve defined 2 by equation (1). The result will be a nonsingular closed curve E C lP' (which can also be viewed as a Riemann surface). Such a curve is called an elliptic curve.
Starting with the end of the seventeenth century, one of the most interesting directions in mathematics (attracting the attention as J. Bernoulli, Euler, Jacobi, Legendre, Abel, among others) has been the study of integrals of the form r dz l Aw(T) = -, TO W where w is an algebraic function of z. Such integrals are now called abelian. Let us examine the simplest instance of an abelian integral, one where w is defined by the polynomial equation (1) where the polynomial on the right hand side has no multiple roots. In this case the function Aw is called an elliptic integral. The value of Aw is determined up to mv + nv, where v and v are complex numbers, and m and n are 1 2 1 2 integers. The set of linear combinations mv+ nv forms a lattice H C C, and 1 2 so to each elliptic integral Aw we can associate the torus C/ H. 2 On the other hand, equation (1) defines a curve in the affine plane C = 2 2 {(z, w)}. Let us complete C2 to the projective plane lP' = lP' (C) by the addition of the "line at infinity," and let us also complete the curve defined 2 by equation (1). The result will be a nonsingular closed curve E C lP' (which can also be viewed as a Riemann surface). Such a curve is called an elliptic curve.
Atsiliepimai
Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
Kainos garantija
Ženkliuku „Kainos garantija” pažymėtoms prekėms Knygos.lt garantuoja geriausią kainą. Jei identiška prekė kitoje internetinėje parduotuvėje kainuoja mažiau - kompensuojame kainų skirtumą. Kainos lyginamos su knygos.lt nurodytų parduotuvių sąrašu prekių kainomis. Knygos.lt įsipareigoja kompensuoti kainų skirtumą pirkėjui, kuris kreipėsi „Kainos garantijos” taisyklėse nurodytomis sąlygomis. Sužinoti daugiau
Elektroninė knyga
22,39 €
DĖMESIO!
Ši knyga pateikiama ACSM formatu. Jis nėra tinkamas įprastoms skaityklėms, kurios palaiko EPUB ar MOBI formato el. knygas.
Svarbu! Nėra galimybės siųstis el. knygų jungiantis iš Jungtinės Karalystės.
Tai knyga, kurią parduoda privatus žmogus. Kai apmokėsite užsakymą, jį per 7 d. išsiųs knygos pardavėjas . Jei to pardavėjas nepadarys laiku, pinigai jums bus grąžinti automatiškai.
Šios knygos būklė nėra įvertinta knygos.lt ekspertų, todėl visa atsakomybė už nurodytą knygos kokybę priklauso pardavėjui.
Atsiliepimai