• Užsisakykite prekes, kurias turime sandėlyje, ir gaukite IKI KALĖDŲ! 7 d.04:05:50
93,39 €
Real Spinorial Groups
Real Spinorial Groups
  • Išparduota
Real Spinorial Groups
Real Spinorial Groups
El. knyga:
93,39 €
This book explores the Lipschitz spinorial groups (versor, pinor, spinor and rotor groups) of a real non-degenerate orthogonal geometry (or orthogonal geometry, for short) and how they relate to the group of isometries of that geometry. After a concise mathematical introduction, it offers an axiomatic presentation of the geometric algebra of an orthogonal geometry. Once it has established the language of geometric algebra (linear grading of the algebra; geometric, exterior and interior product…

Real Spinorial Groups (el. knyga) (skaityta knyga) | knygos.lt

Atsiliepimai

(5.00 Goodreads įvertinimas)

Aprašymas

This book explores the Lipschitz spinorial groups (versor, pinor, spinor and rotor groups) of a real non-degenerate orthogonal geometry (or orthogonal geometry, for short) and how they relate to the group of isometries of that geometry.
After a concise mathematical introduction, it offers an axiomatic presentation of the geometric algebra of an orthogonal geometry. Once it has established the language of geometric algebra (linear grading of the algebra; geometric, exterior and interior products; involutions), it defines the spinorial groups, demonstrates their relation to the isometry groups, and illustrates their suppleness (geometric covariance) with a variety of examples. Lastly, the book provides pointers to major applications, an extensive bibliography and an alphabetic index.
Combining the characteristics of a self-contained research monograph and a state-of-the-art survey, this book is a valuable foundation reference resource on applications for both undergraduate and graduate students.
93,39 €
Prisijunkite ir už šią prekę
gausite
0,93 Knygų Eurų! ?

Elektroninė knyga:
Atsiuntimas po užsakymo akimirksniu! Skirta skaitymui tik kompiuteryje, planšetėje ar kitame elektroniniame įrenginyje.

Mažiausia kaina per 30 dienų: 93,39 €

Mažiausia kaina užfiksuota: Kaina nesikeitė


This book explores the Lipschitz spinorial groups (versor, pinor, spinor and rotor groups) of a real non-degenerate orthogonal geometry (or orthogonal geometry, for short) and how they relate to the group of isometries of that geometry.
After a concise mathematical introduction, it offers an axiomatic presentation of the geometric algebra of an orthogonal geometry. Once it has established the language of geometric algebra (linear grading of the algebra; geometric, exterior and interior products; involutions), it defines the spinorial groups, demonstrates their relation to the isometry groups, and illustrates their suppleness (geometric covariance) with a variety of examples. Lastly, the book provides pointers to major applications, an extensive bibliography and an alphabetic index.
Combining the characteristics of a self-contained research monograph and a state-of-the-art survey, this book is a valuable foundation reference resource on applications for both undergraduate and graduate students.

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
(rodomas nebus)
× promo banner
[{"option":"147","probability":1.4,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/6937d3aa6cc781765266346.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"146","probability":1.4,"style":{"backgroundColor":"#d91e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/6937d36de14231765266285.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"145","probability":1.4,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/6937d34285b0e1765266242.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"144","probability":1.5,"style":{"backgroundColor":"#d91e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/6937d303547111765266179.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"143","probability":1.4,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/6937d2ddb99c31765266141.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"142","probability":1.4,"style":{"backgroundColor":"#d91e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/6937d2a832ef41765266088.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"141","probability":1.4,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/6937d284b3b3f1765266052.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"140","probability":0.1,"style":{"backgroundColor":"#d91e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/6937d45c8beae1765266524.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}}]