107,09 €
Implementing TPM
Implementing TPM
  • Išparduota
Implementing TPM
Implementing TPM
El. knyga:
107,09 €
This book provides an understanding of the complexity and comprehensiveness of the total productive maintenance (TPM) process. It supplements works by Japanese authors with guidance and detail on how the TPM process relates to North American plants or facilities.
0

Implementing TPM | knygos.lt

Atsiliepimai

(3.00 Goodreads įvertinimas)

Aprašymas

This book provides an understanding of the complexity and comprehensiveness of the total productive maintenance (TPM) process. It supplements works by Japanese authors with guidance and detail on how the TPM process relates to North American plants or facilities.

107,09 €
Prisijunkite ir už šią prekę
gausite
1,07 Knygų Eurų! ?

Elektroninė knyga:
Atsiuntimas po užsakymo akimirksniu! Skirta skaitymui tik kompiuteryje, planšetėje ar kitame elektroniniame įrenginyje.

Kaip skaityti el. knygas ACSM formatu?

Mažiausia kaina per 30 dienų: 107,09 €

Mažiausia kaina užfiksuota: 2025-07-11 07:29:29


This book provides an understanding of the complexity and comprehensiveness of the total productive maintenance (TPM) process. It supplements works by Japanese authors with guidance and detail on how the TPM process relates to North American plants or facilities.

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
[{"option":"72","probability":0.5,"style":{"backgroundColor":"#f3f3f3"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/6880855e94e791753253214.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"71","probability":15,"style":{"backgroundColor":"#de1e2f"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/6880849d949d31753253021.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"68","probability":14,"style":{"backgroundColor":"#f3f3f3"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/68808466bf36f1753252966.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"66","probability":13,"style":{"backgroundColor":"#e21e30"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/68808430739a31753252912.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"65","probability":14,"style":{"backgroundColor":"#f3f3f3"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/68808402ec9871753252866.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"64","probability":15,"style":{"backgroundColor":"#e21e30"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/688083260580d1753252646.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"62","probability":14,"style":{"backgroundColor":"#f3f3f3"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/688082c9e40011753252553.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"61","probability":14.5,"style":{"backgroundColor":"#e31e30"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/688082af498881753252527.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}}]