135,69 €
Approximate Iterative Algorithms
Approximate Iterative Algorithms
  • Išparduota
Approximate Iterative Algorithms
Approximate Iterative Algorithms
El. knyga:
135,69 €
Iterative algorithms often rely on approximate evaluation techniques, which may include statistical estimation, computer simulation or functional approximation. This volume presents methods for the study of approximate iterative algorithms, providing tools for the derivation of error bounds and convergence rates, and for the optimal design of such

Approximate Iterative Algorithms (el. knyga) (skaityta knyga) | knygos.lt

Atsiliepimai

(4.00 Goodreads įvertinimas)

Aprašymas

Iterative algorithms often rely on approximate evaluation techniques, which may include statistical estimation, computer simulation or functional approximation. This volume presents methods for the study of approximate iterative algorithms, providing tools for the derivation of error bounds and convergence rates, and for the optimal design of such

135,69 €
Prisijunkite ir už šią prekę
gausite
1,36 Knygų Eurų! ?

Elektroninė knyga:
Atsiuntimas po užsakymo akimirksniu! Skirta skaitymui tik kompiuteryje, planšetėje ar kitame elektroniniame įrenginyje.

Kaip skaityti el. knygas ACSM formatu?

Mažiausia kaina per 30 dienų: 135,69 €

Mažiausia kaina užfiksuota: 2025-11-07 17:26:32


Iterative algorithms often rely on approximate evaluation techniques, which may include statistical estimation, computer simulation or functional approximation. This volume presents methods for the study of approximate iterative algorithms, providing tools for the derivation of error bounds and convergence rates, and for the optimal design of such

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
(rodomas nebus)
[{"option":"129","probability":13,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/691b2307abdb21763386119.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"128","probability":13,"style":{"backgroundColor":"#da1e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/691b22d47f6341763386068.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"127","probability":15,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/691b22b698d6b1763386038.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"126","probability":14,"style":{"backgroundColor":"#da1e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/691b229c542901763386012.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"125","probability":15,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/691b225d36dcf1763385949.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"124","probability":15,"style":{"backgroundColor":"#da1e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/691b2215aaee11763385877.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"123","probability":14,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/691b21f0003da1763385840.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"122","probability":1,"style":{"backgroundColor":"#da1e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/691b203dd14a31763385405.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}}]