Iš viso: 67,49 €
Tensor Categories and Endomorphisms of von Neumann Algebras
Tensor Categories and Endomorphisms of von Neumann Algebras

Kaina internetu: 67,49 €

  • Išsiųsime per 16–20 d.d.
C* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables.The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models.It proceeds with v…
67.49

Tensor Categories and Endomorphisms of von Neumann Algebras | knygos.lt

Atsiliepimai

Formatai:

67,49 € Nauja knyga
minkšti viršeliai

Aprašymas

C* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables.

The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models.

It proceeds with various operations on Q-systems (several decompositions, the mirror Q-system, braided product, centre and full centre of Q-systems) some of which are defined only in the presence of a braiding.

The last chapter gives a brief exposition of the relevance of the mathematical structures presented in the main body for applications in Quantum Field Theory (in particular two-dimensional Conformal Field Theory, also with boundaries or defects).
  • Kaina internetu: 67,49 €
  • Už šią prekę gausite 0.67 knygų eurų!
  • Išsiųsime per 16–20 d.d.

Formatai:

67,49 € Nauja knyga
minkšti viršeliai

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
  • 5
  • 0%
  • 4
  • 0%
  • 3
  • 0%
  • 2
  • 0%
  • 1
  • 0%