Iš viso: 100,49 €
A History of Disease in Ancient Times
A History of Disease in Ancient Times

Kaina internetu: 100,49 €

  • Išsiųsime per 14–18 d. d.
This book shows how bubonic plague and smallpox helped end the Hittite Empire, the Bronze Age in the Near East and later the Carthaginian Empire. The book will examine all the possible infectious diseases present in ancient times and show that life was a daily struggle for survival either avoiding or fighting against these infectious disease epidemics. The book will argue that infectious disease epidemics are a critical link in the chain of causation for the demise of most civilizations in the…
100.49
  • Autorius: Philip Norrie
  • Leidėjas:
  • Metai: 20160705
  • ISBN-10: 3319289365
  • ISBN-13: 9783319289366
  • Formatas: 15.6 x 22.1 x 1.7 cm, kieti viršeliai
  • Kalba: Anglų

A History of Disease in Ancient Times Kieti viršeliai - 20160705

Atsiliepimai

Formatai:

100,49 € Nauja knyga
kieti viršeliai

Aprašymas

This book shows how bubonic plague and smallpox helped end the Hittite Empire, the Bronze Age in the Near East and later the Carthaginian Empire. The book will examine all the possible infectious diseases present in ancient times and show that life was a daily struggle for survival either avoiding or fighting against these infectious disease epidemics. The book will argue that infectious disease epidemics are a critical link in the chain of causation for the demise of most civilizations in the ancient world and that ancient historians should no longer ignore them, as is currently the case.
  • Kaina internetu: 100,49 €
  • Už šią prekę gausite 3.01 knygų eurų!
  • Išsiųsime per 14–18 d. d.

Formatai:

100,49 € Nauja knyga
kieti viršeliai

  • Autorius: Philip Norrie
  • Leidėjas: Springer-Verlag GmbH
  • Metai: 20160705
  • ISBN-10: 3319289365
  • ISBN-13: 9783319289366
  • Formatas: 15.6 x 22.1 x 1.7 cm, kieti viršeliai
  • Kalba: Anglų

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
  • 5
  • 0%
  • 4
  • 0%
  • 3
  • 0%
  • 2
  • 0%
  • 1
  • 0%